Improved Offline Connected Script Recognition Based on Hybrid Strategy

نویسندگان

  • Ghazali Sulong
  • Amjad Rehman
  • Tanzila Saba
چکیده

In domain of analytic cursive word recognition, there are two main approaches: explicit segmentation based and implicit segmentation based. However, both approaches have their own shortcomings. To overcome individual weaknesses, this paper presents a hybrid strategy for recognition of strings of characters (words or numerals). In a two stage dynamic programming based, lexicon driven approach, first an explicit segmentation is applied to segment either cursive handwritten words or numeric strings. However, at this stage, segmentation points are not finalized. In the second verification stage, statistical features are extracted from each segmented area to recognize characters using a trained neural network. To enhance segmentation and recognition accuracy, lexicon is consulted using existing dynamic programming matching techniques. Accordingly, segmentation points are altered to decide true character boundaries by using lexicon feedback. A rigorous experimental protocol shows high performance of the proposed method for cursive handwritten words and numeral strings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Multi-font Numerals Recognition for Urdu Script based Languages

Handwritten character recognition of Urdu script based languages is one of the most difficult task due to complexities of the script. Urdu script based languages has not received much attestation even this script is used more than 1/6th of the population. The complexities in the script makes more complicated the recognition process. The problem in handwritten numeral recognition is the shape si...

متن کامل

An improved offline handwritten character segmentation algorithm for Bangla script

Effective segmentation of offline handwritten word images of unconstrained handwritten Bangla script is a challenging problem in Optical Character Recognition (OCR) application. Presence of a continuous horizontal line called ‘Matra’ is an important feature of this script. However, in unconstrained cursive handwriting, Matra can be wavy or discontinuous, makes the problem of segmentation diffic...

متن کامل

Neural Network Based Approach for Recognition for Devanagiri Characters

The development of a Character recognition system for Devnagri is difficult because (i) there are about 350 basic, modified (“matra”) and compound character shapes in the script and (ii) the characters in a words are topologically connected. Here focus is on the recognition of offline handwritten Hindi characters that can be used in common applications like bank cheques, commercial forms, gover...

متن کامل

Combining different classification approaches to improve off-line Arabic handwritten word recognition

Machine perception and recognition of handwritten text in any language is a difficult problem. Even for Latin script most solutions are restricted to specific domains like bank checks courtesy amount recognition. Arabic script presents additional challenges for handwriting recognition systems due to its highly connected nature, numerous forms of each letter, and other factors. In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010